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Abstract

We consider the recovery of a matrix X, which is simultaneously low rank and joint sparse, from few measurements of its
columns using a two-step algorithm. Each column of X is measured using a combination of two measurement matrices; one which
is the same for every column, while the the second measurement matrix varies from column to column. The recovery proceeds
by first estimating the row subspace vectors from the measurements corresponding to the common matrix. The estimated row
subspace vectors are then used to recover X from all the measurements using a convex program of joint sparsity minimization.
Our main contribution is to provide sufficient conditions on the measurement matrices that guarantee the recovery of such a matrix
using the above two-step algorithm. The results demonstrate quite significant savings in number of measurements when compared
to the standard multiple measurement vector (MMV) scheme, which assumes same time invariant measurement pattern for all
the time frames. We illustrate the impact of the sampling pattern on reconstruction quality using breath held cardiac cine MRI
and cardiac perfusion MRI data, while the utility of the algorithm to accelerate the acquisition is demonstrated on MR parameter
mapping.

Low rank, Joint sparsity, subspace learning, MR acquisition

I. INTRODUCTION

Recent results on the recovery of structured signals, e.g., sparse vectors and low-rank matrices from few of their measurements
have made significant impact in signal and image processing. In medical imaging applications, notably MRI [1] and ultrasound
imaging [2], these results were adapted to significantly improve the spatio-temporal resolution and reduce the scan time.

Several researchers have proposed to use low-rank priors to recover multidimensional MRI datasets such as in dynamic
imaging, parametric mapping, and spectroscopic imaging from undersampled data [3], [4], [5], [6]. These methods re-express
the multidimensional dataset as a Casorati matrix, whose columns are vectorized image frames [3]. Since the image frames
in many imaging applications are linearly dependent, the associated Casorati matrix is low-rank. The earliest works in this
direction relied on a two-step method to recover the matrix, where the row/column subspaces are first recovered from common
measurements of the rows/columns of the matrix (often called as navigators) [3], [4], [5]. The signal is then recovered from
all the measurements using a subspace aware recovery algorithm. The good empirical performance of these methods have
been demonstrated in several multidimensional MRI applications [7], [8], [9], [4], [5], [10], [11], [12]. An alternative to the
above two-step strategy is to recover low-rank matrices is using a single step convex or non-convex optimization algorithms
[6], [13], [14], [15], [16]. A benefit of the latter strategy is that it may not require specialized sampling patterns; it may yield
good recovery from patterns that are are available on modern scanners (e.g. golden angle radial acquisitions). However, the
computational complexity of the two-step algorithm is often considerably smaller than solving the convex optimization problem,
which is especially relevant while working with large multidimensional datasets. The images in the dynamic dataset are also
sparse in appropriate transform domains (e.g. 2-D wavelet transforms, finite differences). The use of sparsity prior, along with
low-rank penalty, is also seen to provide improved recovery [6], [13], [3], [4], [5]. Since the locations of the discontinuities do
not change significantly from frame to frame, the Casorati matrix may also be modeled as a jointly sparse matrix, as in [17],
[18], [19]. To the best of our knowledge, sufficient conditions for the recoverability of a low rank and jointly sparse matrix
using the two-step approach, are not available.

In this paper we theoretically analyze the recovery of a simultaneously low-rank and jointly sparse matrix using two-step
methods in [7]. Our main focus is to derive sufficient conditions on the sampling pattern that guarantees perfect recovery.
Our analysis also affords an improved understanding of the trade-offs that may enable better optimization of the measurement
scheme and the extension of this framework to applications beyond MRI. It is assumed that every column of the matrix (which
has rank r and joint sparsity of k), is sampled using a combination of two measurement matrices Φ and Ai. The matrix Φ
is assumed to be the same for each column, while Ai varies from column to column. A basis set for the row subspace is
estimated from the common measurements of the columns, obtained using Φ. This approach has similarities to recent matrix
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sketching methods used to compress large matrices [20], [21]. The estimated row subspace is used in the second step to recover
the joint sparse matrix from all the available measurements using a convex optimization algorithm. Our results show that the
row subspace can be uniquely identified by any Φ that satisfies spark(Φ) ≥ k+ 1, where k is the joint sparsity of the matrix.
Our results also show that almost all Φ matrices with r rows can guarantee the recovery of the subspace. In many practical
applications, we have r << k, when the second result is quite desirable. Our sufficient condition for successful subspace
aware recovery (second step) relies on partitioning the columns to mutually exclusive clusters. All the columns in a specific
partition are sampled using the same measurement matrix. Our results show that X can be uniquely identified if the spark of
the concatenation of the measurement matrices from all clusters is greater than or equal to 2k+ 1 and the rank of each cluster
is r. We demonstrate that this condition is sufficiently general to include a large class of measurement schemes.

This work generalizes our earlier work on the recovery of jointly sparse and low-rank matrix, where we first recover the
column subspace, followed by subspace aware recovery of the matrix [22]. In [22], we require some of the columns to be
sampled at a high rate (require around O(k) measurements) for column subspace estimation, followed by very low sampling
rate O(r) for the remaining frames [22]. This approach may not be ideally suited for dynamic imaging applications and has
not been used in the MRI context before, where the time available to measure every frame is limited. However, this scheme
may be useful in other applications such as MR parameter mapping, or similar applications where the total sampling time is
the only constraint. In this paper, we focus on the dual approach, where the row subspace is first estimated, followed by row
subspace aware recovery of the matrix. This strategy provides more flexibility in sampling; it can also offer sampling patterns
where the sampling burden is spread evenly across frames. We observe that these two approaches are equivalent when the
joint sparsity of the columns is not assumed. Our theoretical and experimental results clearly demonstrate the significant gains
offered by simultaneous exploitation of joint sparsity and low-rank constraints, which are often satisfied in many practical
imaging applications. We now discuss the relation of the results in this paper to current literature. Necessary conditions for
the perfect recovery of a low-rank matrix using the two-step algorithm are available in [23]; our focus in this paper is on
sufficient conditions, which we believe are practically more useful. It is known that that if the navigator matrix (submatrix
obtained from common measurements) and the original matrix has the same rank, then the subspace can be reliably estimated
from the navigators [3]. The analysis in Section 3 of this paper provides sufficient conditions on when the navigator matrix
has the same rank as the original matrix. It is also known that the second step of the two-step recovery algorithm inherits
the theoretical guarantees for `1 regularization as in [4], [17], assuming random sampling patterns. However, we observe that
most of the patterns that are widely used in two-step recovery are deterministic and periodic [3], [23]. In the context of MRI
applications, it is stated that the recovery is guaranteed if the each k-space sample is sampled atleast r times where r is the
rank/model order as mentioned in [3]. The experiments in Figures 4 and 6 shows that this probabilistic result that is valid for
random low-rank matrices may be violated in applications of practical interest. Specifically, the performance of the two-step
algorithm is observed to be quite different for each pattern, even though each k-space location is sampled the same number of
times in each of the experiments. These experiments also show the utility of the sufficient sampling conditions for deterministic
matrices derived in Section IV of the paper, which guarantees the subspace aware recovery of the simultaneously jointly sparse
and low-rank matrix. In addition, all of the earlier results are specific to Fourier sampling in the MRI context, while the results
in the paper are general enough to be applied to other settings.

There are some limited theoretical results for the recovery of matrices that are simultaneously low-rank and jointly sparse
matrix recovery from few measurements using single step convex algorithms [14]. They assumed that the measurements were
inner products of the structured (low-rank and sparse) matrix with similar sized Gaussian random matrices. Unfortunately,
this approach is not suitable for dynamic imaging and parameter mapping applications, since each of the measurements can
only involve a specific image frame or column of the matrix in these cases. The recent work [24] also shows the difficulty
in exploiting the simultaneous structure in the matrix recovery using convex optimization. In this light, we observe that many
of the practical algorithms that exploit simultaneous structure rely on non-convex optimization [6]. A single step non convex
algorithm (k-t SLR), which penalizes the non-convex Schatten-p norm, was introduced in [13], which has similarities with the
formulation in [16]. Our experiments and previous work show that such non-convex algorithms can provide good recovery,
similar to the two-step algorithm. However, we observe that such algorithms do not come up with theoretical guarantees, either
for convergence to the global minimum or the ability to achieve perfect recovery.

II. PRELIMINARIES AND OBJECTIVE

We denote the data matrix matrix X ∈ Cn×N by

X =
[

x1 x2 . . . xN
]
. (1)

In dynamic imaging applications, n is the number of pixels in each image, while N is the number of frames in the dynamic
data set. Our objective is to recover the above matrix from undersampled measurements using low-rank and joint sparsity
assumptions.
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A. Signal Model & Assumptions

We consider the recovery of matrices that satisfy the following standing assumption of this paper.

Standing Assumption: The matrix X in (1) has the following properties.
1) It is jointly k-sparse, i.e. it has at most k non-zero rows.
2) It is low rank. i.e. rank(X) = r with r << k.
3) The columns of X can be clustered into s submatrices Xi; i = 1, .., s, each of which are of rank r. Specifically, the set
{1, · · · , N} can be partitioned into I1, · · · , Is; the matrix Xi is obtained by combining the columns of X indexed by
Ii, i.e. Xi = [xl]l∈Ii such that rank(Xi) = r, i = 1, · · · , s.

Note that the above set of assumptions are fairly general and can be satisfied by a large class of matrices, coming from
imaging datasets. In many datasets, multiple different partitioning of the columns that satisfy the standing assumption may be
possible. It is easy to see that the number of clusters satisfy

s ≤
⌊
N

r

⌋
. (2)

The best case scenario is when equality holds. A special case of this best-case scenario is spark(X) = r, when any submatrix
of X with r columns has rank r.

Under the standing assumption there exist U ∈ Cn×r, obeying UHU = I , V ∈ CN×r, VHV = I and a positive definite
diagonal Σ ∈ Rr×r such that

X = UΣVH . (3)

Note that in many multidimensional imaging applications including dynamic imaging, the location of the edges or features do
not change significantly from frame to frame. Hence, the dataset can be assumed to be jointly sparse in appropriate transform
domains; i.e, the location of the edges/features do not change from frame to frame. If X is jointly k-sparse, so is U. Should
the sequence of xi represent an MRI time series, then the space spanned by the columns of V defines the temporal basis of
these images, and U defines their coefficients. The range space of V is the signal subspace.

B. two-step recovery scheme

We use a two-step approach in [3], [7], [4], [5], to recover X that satisfies the assumptions. We wish to design observation
matrices, Ai and Φ, i ∈ {1, · · · , s} such that:

Yi =

[
Zi
Ei

]
=

[
Φ
Ai

]
︸ ︷︷ ︸

Di

Xi (4)

Here, Φ ∈ Ct×n is a measurement matrix that is applied to all the columns. Ai is exclusive to column contained in the index
set Ii; all columns in the same index set are sampled with the same measurement matrix.

We execute the following 2-step recovery process :
(1) In Step 1, we will use the Zi generated through the common observation matrix Φ to estimate a full row rank matrix

Q ∈ Cr×N , such that X admits the factorization
X = PQ. (5)

Here, P ∈ Cn×r is an unknown jointly k-sparse matrix . As will be evident later, the null space of X is identical to that
of Q and the rows of Q form a temporal basis for MRI images. Consequently, we will refer to Q as a row subspace
matrix. Note that

rank(P) = r. (6)

(2) Having reduced the estimation of X to that of P, we execute Step 2 that uses all the Yi to estimate P. Observe Yi is
generated through Di that has Φ as a submatrix. In the context of dynamic MRI, the row dimension of Di correspond
to the number of k-space samples acquired in the ith frame. We note that the row dimension of Di may vary across the
index i.

In some settings, X may be sparse in a different basis i.e. for some unitary W, WX is sparse. In this case the development
in the sequel goes through, with X and U replaced by WX and WU, respectively. For example W could be a matrix
representing the discrete wavelet transform (DWT).
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C. Numerical Algorithm

We demonstrate the utility of the above framework in recovering dynamic MRI and MR parameter mapping data from highly
undersampled measurements. We use the sampling scheme described in (4). The algorithm to recover the signal X involves
the following steps:

1) We use Q = E, where ZHZ = QQH = ESEH is the SVD of ZHZ, provides better conditioning in Q. Note that
ES1/2 is a valid square root of ZHZ. As done in [9], removing the scaling term S1/2, provides a better conditioned Q
matrix, justifying the choice.

2) Following the recovery of Q, we recover P by solving the optimization problem

P̂ = arg min
P

s∑
i=1

‖Di PQi︸︷︷︸
Xi

−Yi‖22 + λ ‖T(P)‖`21 (7)

Here, Xi = PQi are the submatrix corresponding to the ith partition, which is sampled using the same sampling matrix
Di as in (4). We note that the data consistency term can be combined into a single larger `2 norm involving all the
samples. However, this makes it harder to analyze the problem and come up with sufficient conditions. The partitioning
strategy is consistent with the notations in Section IV. The operator T in (7) an appropriately chosen sparsifying transform
or operator and λ is the regularization parameter. The `21 norm specified by

‖X‖`21 =

n∑
i=1

√√√√ N∑
j=1

|X(i, j)|2 (8)

is used to promote joint sparsity of the columns of X as in [17]. We solve the above problem using the alternating
direction method of multipliers [25]. A variable splitting was performed on P by introducing an auxiliary variable
P = P1. The corresponding algorithm alternates between a conjugate gradient solution, a shrinkage step and update of
Lagrange multiplier.

III. SUFFICIENT CONDITIONS FOR SUBSPACE ESTIMATION (STEP 1)

We will now analyze the first step of the algorithm, where we estimate the row subspace matrix Q in (5). With Φ as in (4)
and X as in (3), define

Z = ΦX. (9)

Theorem III.1 below shows that the row subspace matrix Q in (5) can be estimated as any square root of ZHZ. It also provides
conditions on Φ under which Q and P, both have rank r.
Theorem III.1. Consider (9) with the standing assumption in force. Then, for every Q ∈ Cr×N , which is a square root of
ZHZ; i.e.,

QQH = ZHZ, (10)

there is a P ∈ Cn×r, such that (5) holds. If spark(Φ) > k then both Q P in (5) have rank r, and P is jointly k-sparse. Finally,
with the index set Ii defined in the standing assumption, define

Qi = [ql]l∈Ii (11)

where ql is the l-th column of Q. Then
rank[Qi] = rank[Xi] = r. (12)

The proof provided in Appendix A shows that there exists a nonsingular R ∈ Cr×r, such that:

Q = RVH (13)

and the unknown P is in fact
P = UΣR−1. (14)

Observe that the estimation of the row subspace matrix Q (which is not unique) simply requires estimating any square root
of ZHZ. This of course can be accomplished by a straightforward SVD. However, the execution of the second step described
in Section IV, requires that P in (5) have rank r and indeed that (12) holds. Theorem III.1 provides a worst case sufficient
condition for this, namely spark(Φ) > k. This requires that the Φ have at least k rows. However, we now show in Theorem
III.2 below that barring pathologies a Φ with only r-rows suffices. When r << k, this constitutes a considerable saving.

We note that Theorem III.2 refers to the term almost all. This is a standard term in the literature, e.g. [26]. In particular,
we say a condition holds for almost all Φ ∈ Ct×n, if the set of elements of Φ for which the condition fails has zero volume
in the tn-dimensional space where these elements reside. On the other hand when we say that a result holds for almost all
X ∈ Cn×N with rank r, we are assuming that we are considering matrices X = X1X2, with X1 ∈ Cn×r and X2 ∈ Cr×N .
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The ambient space here is the space of elements of Xi. Almost all such matrices have rank r, and their product has rank r
only if each factor has rank r [27]. Then the volume that has to be zero for the almost all proviso to obtain, must be in the
nr +Nr dimensional space of the elements of Xi.
Theorem III.2. With the various quantities defined in Theorem III.1, suppose the standing assumption holds. Then,

(a) for almost all matrices Φ ∈ Ct×n; t ≥ r, the row subspace matrix obtained as QQH = ZHZ satisfies (5) with

rank(P) = rank(Q) = r. (15)

In addition, the Q matrix also satisfies (12).
(b) If rank(Φ) = r, then (15) and (12) hold for almost all X with rank r.
The proof is given in Appendix B. Theorem III.2.(a) shows that almost all Φ ∈ Ct×n, e.g. those with elements drawn from

i.i.d. complex Gaussian distributions, would achieve the desired properties, given any X satisfying the standing assumption.
On the other hand, in applications like MRI, one does not have the luxury of using random observation matrices, but must
instead employ submatrices of 2-D DFT matrices. This underscores the importance of (b) of Theorem III.2 as it shows that as
long as the observation matrix has rank r, it can induce the required conditions for almost all data matrices X.

Theorem 1 in [23] shows that if the full Casorati matrix and the navigator matrix have the same rank, one can estimate
the temporal matrix from the navigators. However, no sufficient conditions on when the above condition is satisfied (navigator
matrix and the full matrix has the same rank) are available in the literature. The theory introduced above provides sufficient
conditions on when the estimated temporal subspace matches the original one.

A. Issues of conditioning

The successful recovery of Q, only requires a SVD and can be robustly achieved without further conditioning requirements.
On the other hand, as will be evident in Section IV, the robust execution of the second step benefits from a well conditioned
Q, in turn assured due to (13) by a well conditioned R or ΦUΣ. Theorem III.3 shows that such is the case if Φ satisfies the
restricted isometry property (RIP) for k-sparse vectors. We emphasize though, that Q does not have a RIP requirement.
Theorem III.3. Suppose the standing assumption holds and the measurement matrix Φ satisfies the RIP condition for k-sparse
vectors, i.e. for all v ∈ Cn and ‖v‖0 ≤ k,

(1− δk)‖v‖22 ≤ ‖Φv‖22 ≤ (1 + δk)‖v‖22. (16)

Then the condition number of R,κ(R) is bounded by

κ(R) ≤
√

1 + δk
1− δk

κ(X) (17)

Of course the RIP condition in (16) requires that Φ have at least k rows. On the other hand we can invoke random matrix
theory, e.g. [28, Theorem 3.2], to address the more desirable setting where generically, only r rows are required to achieve a
well conditioned R. Indeed if the entries of Φ are independent, zero mean, complex Gaussian with unit variance and Φ as
t-rows, then under the standing assumption for a constant M independent of c and for every c > 1

Pr[κ(ΦU) > c] ≤Mc−2(t−r+1). (18)

Arguing as in the proof of Theorem III.2 a corresponding result holds for a given Φ with r-rows and Gaussian X. The constant
M , defined in [28], depends on r and t and is phrased as an expectation. Note that the probability that the condition number
exceeds c declines rapidly with a growing c, depending on t− r + 1, where t is the number of common measurements.

The image frames in multidimensional imaging applications such as parameter mapping & dynamic imaging can be modeled
as a low-rank dataset since the signal originates from a finite number of spatial regions (e.g. organs) with distinct time profiles.
Since the number of image regions with distinct intensity profiles are usually much smaller than the number of edge features
separating them, the the rank of the dataset X is often much smaller than the joint sparsity, k. The above results show that the
row subspace of X can be robustly recovered from Z = ΦX with very few measurements. In Fig. 2 we compare the accuracy
of the row subspace recovery by varying t for different measurement matrices, e.g., Gaussian matrices and measurements from
radial trajectories on the 2-D Fourier space.

IV. SUFFICIENT CONDITIONS FOR SUBSPACE AWARE RECOVERY (STEP 2)

The previous section shows that the row subspace matrix Q can be recovered as any square root of of ZHZ, itself obtained
by the first set of measurements, (9). In this Section we describe how to leverage the knowledge of Q to estimate P, and
hence because of (5) completing the estimation of X.
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To put the role of Step II in context we first observe that as X is jointly k-sparse and has rank r, traditional MMV results
that use a single observation matrix to recover X, [29], state that a sufficient condition for recovering X is that the observation
matrix have spark that is no smaller than 2k − r + 1. As X has N columns, the total number of observations thus equals

NMMV ≥ (2k − r + 1)N. (19)

We will show that the combined number of measurements required to estimate P and Q and hence X is considerably smaller,
particularly when the rank of X is small. We also observe that our earlier work in [22] employs two measurement matrices
and also requires fewer measurements than (19). We contrast the approach in this paper with that in [22] at the end of Section
IV.

We consider separately, the measurements Yi for each cluster of vectors indexed by the sets Ii defined in the standing
assumption: For each i ∈ {1, · · · , s}

Di Xi = Yi; i = 1, ..s, (20)

With Qi defined in (11), the above relations translate to

Di P Qi = Yi.

By conditions assumed in Theorem III.1 (see (12)), each Qi has rank r. If Qi has full row rank r, the pseudo-inverse defined
by

Q†l = QH
l

(
QlQ

H
l

)−1
, (21)

will satisfy QlQ
†
l = I. Using this relation in (20), we obtain

D1

D2

...
Ds


︸ ︷︷ ︸

D

P =


Y1Q

†
1

Y2Q
†
2

...
YsQ

†
s

 (22)

If D is full rank, P can be recovered even in the absence of joint-sparsity. However, the sampling requirement is considerably
lower when P has at most k nonzero rows and rank r [29], as stated by the following result.
Theorem IV.1. Suppose the standing assumption holds and each Qi, i ∈ {1, · · · , s} defined in (11) has full row rank r. Then
one can uniquely estimate P in (5) from the measurement cluster measurements Yi in (4) if

spark (D) ≥ 2k − r + 1. (23)

Since P is k jointly sparse and has a rank or r, the result follows directly from [29].
Note that the above theorem provides great flexibility in sampling. For example, the measurement matrices Di need not

have the same number of rows, which implies that the number of k-space samples per frame may vary from frame to frame.
The only constraint is that the concatenation of the measurement matrices satisfy (23). In addition, the partitions are also not
required to be of the same size. The constraint that Qi; i = 1, .., s have full row rank implies that there are at least r columns
in each partition Xi (equivalently, at least r rows in Qi). The full rank condition on Qi; i = 1, .., s can be easily ensured if
we assume that spark(X) = r + 1, which implies that any set of r columns of X are linearly independent. In the context of
multidimensional imaging, this implies that any r images in the series are linearly independent, which is often satisfied by
many applications. In practice, it is possible to choose larger partitions or carefully choose the partitions depending on the
prior information supplied by the physics of the application to ensure that Qi are of full row rank. We illustrate the impact
of the above assumption on the reconstruction, and show that carefully choosing the partitions depending on the application
allows us to achieve good recovery with relatively few measurements.

We observe that we may choose a single partition with r columns, which are measured using D, while the rest of the
columns are sampled using Φ; the rows of Φ is a subset of the rows of D. The matrix is uniquely identified, provided
spark(D) ≥ 2k − r + 1 and the matrix Q1 is full rank. We observe that this is the same condition we obtained in our earlier
work [22]. As described earlier, this approach results in an asymmetric sampling pattern, where some frames are measured at
a high rate. Hence, this scheme is not suited for dynamic imaging applications where the time to acquire the measurement
from any frame is limited; it may be more desirable in other applications such as MR parameter mapping, where there is no
such restriction, while the signal to noise ratio degrade with echo-time. The scheme considered in this paper can accommodate
more symmetric sampling patterns, where the sampling burden is distributed equally among the frames.



7

A. Measurements required for unique identifiability

The above two-step scheme requires O(r) measurements per column to recover the row subspace; this adds up to O(Nr) all
together. If spark(X) = r+ 1, we can consider N/r partitions of r columns each. If all the measurements for subspace aware
recovery were allocated on one cluster, we have 2k measurements/column including the ones used for subspace estimation.
Thus, on total, we need 2kr + r(N − r) = r(2k + N − r) measurements. Note that this special case of sampling is similar
to the our previous work [22]; where we first estimated the column subspace of X, followed by the column subspace aware
recovery.

The measurements for subspace aware recovery may be distributed equally among the clusters. In this case, the number
of measurements per column is (2k − r)/(N/r) = r(2k − r)/N . Summing the r measurements/column for row subspace
estimation and the one for subspace aware recovery, we obtain r(2k − r) + rN = r(2k +N − r). Note that the total number
of samples are the same as the previous case, while the number of samples in each column is small. This symmetric sampling
scheme is desirable in applications such as dynamic imaging, when it is not possible to sample only a few frames heavily.

The classical MMV scheme requires a total of (2k−r+1)N measurements for its unique recovery of a matrix of dimension
n×N and rank r and joint sparsity k. This comes from the spark condition given in [29]. Note that the minimum number of
measurements required for the unique identification is much smaller in the two-step setting. Specifically, when r << k and
large N , one would need ≈ 2kN measurements with MMV, while with the two-step scheme it is ≈ rN .

Liang et al., have introduced the necessary conditions for the recovery of a low-rank matrix, which states that that the total
number of measurements should be greater than r(n+N − r) [3]. If we remove the joint sparsity assumption, this minimum
number of measurements agrees with the minimum number of sufficient measurements, suggested by our theory. However,
note that ours is a sufficient condition, while the one in [3] is a necessary condition; some measurement schemes with the
above number of samples may not yield perfect recovery.

B. Guarantees for `1 minimization based recovery of P

Consider now the recovery of P from (22) using an `1 optimization. The matrix P can be recovered either by joint sparse
recovery, or the independent sparse recovery of the columns of P. The performance improvement resulting from joint sparse
recovery is expected to be minimal when r << k. It is easy to see that a matrix D that satisfies the RIP condition [30] for
robust `1 recovery of k-sparse vectors will succeed in recovering P from (22).

Step II uses preprocessed measurements in (22). However, the preprocessing step can amplify noise. Specifically, if the
condition number of the matrices Qi; i = 1, .., s are high, the recovery of P from noisy measurements using `1 minimization
is challenging. We now derive RIP bounds for the mapping from P to Y.
Theorem IV.2. Suppose D in (23), satisfies the restricted isometry condition specified by

(1− δ) ‖x‖22 ≤ ‖Dx‖22 ≤ (1 + δ) ‖x‖22;∀x : ‖x‖`0 ≤ k (24)

Furthermore, assume that the maximum and minimum eigenvalues of Qi; i = 1, .., s are bounded above and below:

η1 =
s

max
i=1

λmax(QiQ
H
i )− 1 (25)

η2 = 1−
s

min
i=1

λmin(QiQ
H
i ). (26)

and η = max(η1, η2). Then, with ‖ · ‖2 denoting the induced matrix 2-norm for matrices,

(1− δη) ‖P‖22 ≤ ‖Y‖22 ≤ (1 + δη) ‖P‖22 (27)

for all k-jointly sparse matrices P ∈ Cn×r that are related to Y ∈ Cm×N by the relation

Yi = Di P Qi; i = 1, ..., s. (28)

The proof is in the appendix.
The above analysis shows that good recovery using `1 minimization is guaranteed, provided D has adequate RIP bounds

and the matrices Qi; i = 1, .., s are well-conditioned. The condition number of these matrices can be improved by choosing
more columns in each partition than r, which is the minimum possible number. In addition, prior knowledge can be used to
partition the columns in X such that the columns in each cluster are linearly independent; We demonstrate this approach in
an example in the context of dynamic imaging.
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V. NUMERICAL VALIDATION OF SUFFICIENT CONDITIONS

A. two-step recovery from Gaussian random measurements

We first demonstrate the two-step recovery algorithm on a synthetically generated low rank and joint sparse matrix, with
Gaussian random entries. Each realization of X was generated as X = UVH with a rank of r = 10 and sparsity of k = 25.
Specifically, the matrix U ∈ C80×10 has only 25 non-zero rows, which are chosen as random Gaussian entries. The matrix
V ∈ C100×10 is chosen as a random Gaussian matrix. Note that a random V matrix will satisfy spark(VH) = r + 1 with
high probability; any clustering where each partition has r = 10 or more columns will result in well-posed recovery.

We use a measurement scheme specified by (4), where Φ and Ai are Gaussian random matrices. We cluster the columns
into 10 partitions, each with ten adjacent columns (i.e, I1 = {10i− 9, .., 10i}; i = 1, .., 10). The row subspace was recovered
from the common measurements Z, while the CVX toolbox was used [31] to solve for (7) in the second step. We assumed Φ
to be a Gaussian random matrix with m1 rows, while each Ai; i = 1, .., 10 matrices are chosen as Gaussian random matrices
with m2 rows. We compute the signal to error ratio (SER) of the recovered matrix as

SERdB = 10 log
||Y||2F

||Yest −Y||2F
, (29)

where Yest is the estimated matrix and Y is the original matrix.
The SER of the recovery as a function of common and total measurements, m1 and m2 is shown in Fig. 1. The SER values

are averaged over 100 iterations of Gaussian random matrices X generated and recovered as mentioned above. Theorem III.2
suggests, we need a minimum of m1 = r and m2 measurements such that:

2k − r ≤ m1 +
m2N

r
=⇒ (2k − r)r

N
≤ m2 +

m1r

N
≈ m2

Hence, we normalize the x axis to m2

(2k−r)r/N and the y axis to m1

r . We observe that the two-step algorithm provides good
recovery when m1 > r, which confirms Theorem III.2. The results also show that we require m2 ≈ 4(2k − r)r/N for good
recovery, which is in-line with what is reported in conventional compressed sensing literature.

B. Row subspace estimation (step 1) using Fourier matrices

We considered the recovery using Gaussian random matrices in the previous section. We now determine the utility of
Fourier sampling patterns for row subspace estimation when the columns are images, drawn from the numerical cardiac and
torso (NCAT) phantom [32] consisting of a beating heart. This choice is motivated by the potential application of the framework
in multidimensional MRI, where measurements are samples on the 2D Fourier grid. Current two-step methods assume that
the subspace can be estimated from few common Fourier measurements; this assumption has not been carefully studied. In
this simulation, we study the dependence of the accuracy of the row subspace estimate, on the number of samples and the
sampling patterns. We considered two cases: (i) breath-held CINE with images of size 100 × 100, 20 phases, and 10 heart
beats (the Casorati matrix is of dimension 10000× 200 with a rank of r = 20]. (ii) free breathing CINE data with images of
size 128× 128, 1500 frames, and a rank of r ≈ 30. In the second case, we observe that truncating the rank, of the originally
high rank dataset to r = 30 results in minimal distortion.

We obtained the common measurements Z = ΦX with four different Φ matrices, a Gaussian random matrix, and three
submatrices of the 2-D discrete Fourier transform (DFT) matrix. The DFT samples correspond to (a) 1 horizontal line, (b) 3
horizontal lines, placed 2 pixels apart (c) 5 radial lines, separated by 120◦, (d) 3 vertical lines, placed 2 pixels apart, (e) 1
vertical line and (See 2 a). The subspace matrix Q is estimated using the SVD of Z as described before. We determine the
accuracy of the estimated row subspace matrix Q and the actual subspace matrix V using the following metric:

E(V,Q) =
||(I−QQH)V||22

2||V||22
+
||(I−VVH)Q||22

2||Q||22
(30)

Here, the columns of V and Q are assumed to be orthonormal. Note that when the spaces spanned by the columns of V and
Q are identical, the above metric would be zero. When the two subspaces are orthogonal, E(V,Q) = 1. We plot this metric
against increasing number of common measurements, t for different Φ in Fig. 2. We observe the metric saturates around t = r
measurements, irrespective of the specific choice of Φ. Note that t = r is the number of measurements specified by III.2.
With lower t, in (b), the metric for the single lines suffer, due to limited k-space coverage. With lower t (but t > r), in (c)
the metric for the horizontal lines suffers slightly. This corresponds to a horizontal projection and hence fails to capture the
vertical motion in the dataset. This effect is absent in (b), because of no significant motion (compared to (c)) in any direction.
The above experiments show that the subspace can be reliably estimated from very few common Fourier measurements of
each column of X.
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Fig. 1. Simulated low rank and joint sparse matrix recovered using the two-step scheme. Adjacent clustering was used for the variable measurements. SER is
plotted against normalized common and variable measurements. Good recovery is expected when the total measurements are high. The convex optimization
scheme failed for the top rows with low values of m1, which is indicated by black color.

(a) Trajectories in 2D Fourier space: 1 horizontal line, 1 vertical line, 3
horizontal lines, 3 vertical lines, 5 radial lines (l-r)

(b) Breath held CINE (c) Free breathing CINE

Fig. 2. Sampling matrices (a) Gaussian random matrix (standard normal & not shown in Fig 2 a), one and 3 horizontal lines in k-space, 1 and 3 vertical
lines in k-space and 5 radial lines (separated by the golden angle) in k-space were used to estimate the row subspace of the breath-held, r = 20 (b) and
free-breathing, r = 30 (c) NCAT dataset [32]. Row subspace estimation accuracy defined in (30), E is observed against increasing number of common
measurements, t for above measurement schemes. t is varied by varying the undersampling in each trajectory. E increases significantly and saturates after
t = r. In agreement with our results in Section III, accurate row space estimation is ensured after the no. of common measurements exceed the sparsity of
the data matrix.

C. Impact of partitioning on subspace aware recovery (step 2)

We now study the impact of the choice of sampling patterns and partitioning of frames in different multidimensional imaging
applications. Our sufficient condition in Theorem IV.1 relies on grouping columns into clusters, each having full column rank
for unique identifiability. While one can increase the number of columns in each partition to guarantee this condition, the
drawback will be the increased sampling burden. We now demonstrate that partitioning strategies can be chosen based on prior
information of the image content to minimize sampling burden. Specifically, the goal is to improve the chances of columns in
each cluster to be dissimilar. Note that this section is just an illustration of how the flexibility offered by the framework can
be capitalized; clever sampling schemes that depends on the physiology, similar to [33], [34] may be designed depending on
the application. We study three partitioning strategies, which are illustrated in Fig. 3:

1) Adjacent partitioning: Here, we group r adjacent columns into a partition (i.e, Ii = {ri − r + 1, .., ri}; i = 1, .., N/r)
in a sequential fashion. The same sampling pattern is used for all of these columns in the same partition as shown in



10

Fig. 3. Illustration of the sampling patterns used in the numerical validations. We cluster the columns into N/r distinct partitions as shown in the bottom
row in three different ways. In the adjacent partitioning, r adjacent columns are grouped into a cluster. In the periodic clustering strategy, columns separated
by N/r are grouped into a single cluster, while the cluster membership is assigned randomly in the last example. The same sampling pattern is chosen for
all the columns in the same cluster. Note that here r = s = 5, N = 25, common lines = 4 (in red) and variable lines = 10 (in green) are used for illustrative
purposes, the actual parameters used for each experiment is specified later.

Fig. 3. For example, all the red columns use the pattern outlined by the red border. This pattern may be ideally suited
for periodically changing image content (e.g breath-held cardiac cine applications), where the adjacent frames are most
likely to be dissimilar.

2) Periodic partitioning: Here, we choose every frame indexed by N/r into the same cluster (i.e, Ii = {i, i + N/r, i +
2N/r, ..}; i = 1, .., N/r). The same sampling pattern is used for all the columns in the same partition, indicated by the
same color. The second pattern is suited for slowly changing image content (e.g. myocardial perfusion MRI), where
adjacent frames are highly similar.

3) Random partitioning: Here, we populate each cluster by randomly choosing r columns without replacement.
We first study different partitioning strategies illustrated in Fig. 3 in a breath-held cardiac CINE MRI simulation in Fig.

4. We retrospectively undersampled a fully sampled ECG-gated cardiac CINE dataset acquired on a Siemens 3T TIM Trio
scanner. The scan parameters were: TR/TE = 4.2/2.2 ms, number of slices = 5, slice thickness = 5 mm, FOV = 300 mm, base
resolution = 256, number of phases = 19, number of channels = 18. The reconstructed frames were repeated so that the dataset
is periodic; the assumption that cardiac cycles are periodic during a short acquisition window ( 20-30 s) is widely used in
the breath-held cine setting with good success in subjects without arrhythmia. We assumed a single coil acquisition scheme.
We observe that the classical binning approach used in CINE recovers a single cardiac cycle. However, several researchers
[35], [36], [37], [38] have shown that one can equivalently recover the entire data, exploiting the (pseudo) periodicity of the
data. The raw k space samples were under-sampled according to the patterns described above and illustrated in Fig. 3. For the
reconstruction step, the finite difference operator was chosen as T in (7) for all the MR experiments. Fig. 4 a shows the original
images at various time points/phases. We observe that the partitioning strategy where adjacent frames are assigned to the same
cluster provided the best results (first row of Fig. 4 c). The periodic pattern (second row) provided the worst results since
the columns in each cluster are linearly dependent. The results also show that while randomization of the patterns provided
slightly lower performance, the patterns didn’t have to be matched to the data. This pattern may be a better fit in applications
with arrhythmia and when the periodicity is unknown. Note that we chose the minimum number of samples and columns per
partition to demonstrate the difference in performance. In practice, one would choose more columns per partition and acquire
more measurements per column to ensure good performance. The reconstructions using k-t SLR (see Fig. 4.b) are also shown
for comparisons. The k-t SLR parameters were optimized to get the best reconstruction error. The Schatten p-value obtained
was 0.8, hence a non-convex k-t SLR. The reconstructions show that the performance of the two-step algorithm is comparable
to that of the single step non-convex k-t SLR scheme, when the sampling pattern is properly chosen. While non-convex k-t
SLR seem to be relatively insensitive to the specific sampling pattern, the main benefit of the two-step scheme over non-convex
k-t SLR is the significantly lower computation time (6 fold lower). Fig. 5 show the SER in two-step reconstruction (w.r.t to the
original) for the three patterns at different undersampling rates. Different undersampling is achieved by changing the number
of common and variable radial lines.

We illustrate the impact of different partitioning strategies considered in Fig. 3 in a gated myocardial perfusion MRI dataset
in Fig. 6. Similar to the previous experiment, this is also a simulation to illustrate the trade-offs in the two-step framework.
We assumed a single coil acquisition scheme. Since imaging is restricted to the diastolic phase of each heart beat, the image
content changes slowly due to bolus passage. The fully sampled data was obtained from a subject on a Siemens 3T MRI. The
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(a) Original image data and time series

(b) non-convex k-t SLR reconstruction (c) two-step recovery

Fig. 4. Impact of the different clustering strategies on the recovery of breath-held cardiac MRI (CINE) data using the two-step algorithm. We retrospectively
under-sample the data in the Fourier space, corresponding to an acceleration of 4. (a) corresponds to the original (fully sampled dataset).The first four columns
show 4 frames from the cardiac time series. The last column is the time profile along the horizontal orange line shown in the first column. (b-c) The rows below
correspond to Row 2; Adjacent partitioning, Row 3: Periodic partitioning, Row 4: Random partitioning. The parameters of the reconstruction are assumed
rank, r = 10, group size, s = 10, common + variable radial lines = 10+15. The regularization parameters of both the methods are chosen to yield the best
possible recovery, measured by the `2 error. For k-t SLR, the Schatten p-value used is 0.8, hence a non-convex k-t SLR. Since the signal is periodic, the
adjacent pattern yielded the best possible recovery as expected. We observe that the non-convex k-t SLR reconstructions are not too sensitive to the specific
sampling pattern. However, we observe that the non-convex k-t SLR takes around 240 s to converge, while the two-step algorithm is around six fold faster (39
s). These experiments show that the performance of the two-step algorithm can be quite comparable to that of the non-convex k-t SLR, when the sampling
pattern is chosen well.

Cartesian dataset (phase × frequency encodes × time = 90 × 190 × 70) was acquired using a saturation recovery FLASH
sequence (3 slices, TR/TE = 2.5/1.5 ms, sat. recovery time = 100 ms). This was a ECG-gated acquisition with images acquired
only from the diastole phase. The raw k space samples were retrospectively under-sampled according to the patterns mentioned.
Fig. 6 a shows the original images at various progression of contrast. The two-step reconstructions for 3 different patterns is
shown in Fig. 6 c. While the differences in performance is not as striking as in the CINE case, we observe that the adjacent
pattern provides reconstructions with the lowest SER and exhibits some spatial blurring. This is expected since the collection of
neighboring frames tend to be rank deficient. The periodic pattern works well for the perfusion case as the equidistant frames
span the rank r subspace. The random or the generalized pattern works fairly well in both the cases. The reconstructions using
k-t SLR are also shown in (see Fig. 6.b) for comparisons. The k-t SLR parameters were optimized to get the best reconstruction
error; the optimal Schatten p-value was 0.8. The comparisons against non-convex k-t SLR shows that the two-step scheme can
provide comparable reconstructions when the sampling pattern is properly chosen. As discussed earlier, the main benefit of the
two-step scheme over non-convex k-t SLR is the significantly lower computation time (3 fold lower). Fig. 7. shows the SER in
reconstruction for various common and variable radial lines used in undersampling the perfusion data. All the reconstructions
were performed in MATLAB on a desktop computer: Intel Xeon processor (2.40GHz) and 16 GB RAM.

VI. EXPERIMENTAL RESULTS

We now illustrate the framework in an important MRI application: acceleration of parameter mapping in MRI for quantitative
imaging. The two-step framework has been previously considered in the recovery of a single parameter map in [11], [12].
The main difference is the current setting is the joint recovery of T1,ρ and T2 maps. This dataset was acquired from a healthy
subject using a segmented 3D GRE sequence on a Siemens 3T MRI. The scan parameters were: FOV= 22x22x22 cm3, TR/TE
= 5.6/2.53ms, no. of coils = 12 and no. of slices = 128, matrix size = 128× 128× 20. We used 10 different spin lock times
(TSL) to encode the T1,ρ parameter, while 10 different echo times (TE) were used to encode the T2 tissue relaxation parameter
values. Both parameters TE and TSL were sampled uniformly between 0 to 100 ms. The data was acquired using a 2x2
inplane 3-D undersampling pattern; the readouts were orthogonal to the slice direction. The sampling patterns are described
in Fig 8 (a-b). We estimated the coil sensitivity maps from a fully sampled reference scan using the Walsh method in [39].
We perform a SENSE reconstruction of the 2x2 undersampled data. Post recovery, T1,ρ and T2 maps were estimated using
mono-exponential model, which are shown in Fig. 8.c & d. The background (skull and black space) has been removed just to
highlight the relevant anatomical regions.
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(a) Adjacent pattern (b) Periodic pattern (c) Random pattern

Fig. 5. Variation of reconstruction performance of the two-step algorithm with different measurement settings for the cardiac CINE experiment in Fig. 4. (a-c)
SER of the reconstructions with the algorithm in Section II-C for all the 3 patterns at various common and variable lines used to undersample the breath-held
cardiac data. Each block on the grid corresponds to a specific artificial undersampling of the raw k space data with a certain number of common and variable
lines and the value in that grid is the SER for that reconstruction. We observe that very few common lines are often needed to obtain good recovery. We also
observe that the periodic pattern gives the worst performance for all sampling parameters as expected.

(a) Original image data and time series

(b) non-convex k-t SLR reconstruction (c) two-step recovery

Fig. 6. Impact of clustering strategies on the recovery of myocardial perfusion MRI data using the two-step algorithm: We consider the recovery of myocardial
perfusion MRI reconstructions from single channel acquisitions with an acceleration 1.75. Four different images in the fully sampled datasets and a time
profile is shown in (a). The results of the two-step recovery algorithm in Section II-C corresponding to different partitioning are shown in the following rows
of (c). We also show comparisons with k-t SLR for comparison in (b). The rows correspond to Row 1: Adjacent partitioning, Row 2: Periodic partitioning,
Row 3: Random partitioning. The parameters of the reconstruction algorithm are assumed rank, r = 9, group size, s = 3, common + variable radial lines =
13+39. The regularization parameters in each case are optimized to obtain the best possible reconstruction quality. For k-t SLR, the Schatten p-value used is
0.8, hence a non-convex k-t SLR. We observe that the non-convex k-t SLR takes around 131 s to converge, while the two-step algorithm is around six fold
faster (35 s).

The above k-space data was further undersampled using a pseudo-random variable density sampling pattern, to achieve a
net acceleration of 1

0.25∗0.64 = 6.25. One-tenth of the measurements are common for all the frames (corresponding to Φ). The
finite difference operator was chosen as T in (7). Since the image content changes slowly, we assumed a periodic clustering
pattern with an assumed rank of four. The row subspace is estimated using SVD of the common measurements, while the
subspace-aware sparse optimization is performed to recover the images from the undersampled images based on equation (7).
The maps shown in Fig. 8.a & b are estimates of the fit. The SER for the SENSE 2× 2 reconstruction compared against the
two-step result was 12 dB for the T1ρ maps and 13.25 dB for the T2 maps (averaged over the maps corresponding to the 3
cuts generating the 3 views of the brain displayed). Along with SENSE, k-t SLR comparisons were performed. The k-t SLR
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(a) Adjacent pattern (b) Periodic pattern (c) Random pattern

Fig. 7. Variation of reconstruction performance of the two-step algorithm with different measurement settings for the myocardial perfusion experiment in Fig.
6. Each block on the grid corresponds to an artificial undersampling of the raw k space data with a certain number of common and variable lines and the
value in that grid is the SER for that reconstruction. We observe that the performance of the adjacent pattern is lower than that of the other two, especially
with very few variable lines.

parameters were optimized to get the best reconstruction error. The Schatten p-value obtained was 0.1. The SER for SENSE
against the non-convex k-t SLR reconstruction was 12.9 dB and 12.8 dB respectively. We applied the same acceleration for
non-convex k-t SLR as we did with the two-step recovery and got comparable results. The literature suggests T1,ρ and T2
values in the range 85 ± 3s, 109 ± 11s for white matter and 99 ± 1s, 96 ± 9s for gray matter regions, respectively, which is
in good agreement with our findings. The maps we got from the reconstruction of accelerated data is close to what we got
from a 2 × 2 undersampled SENSE reconstruction. Also, for all SENSE, non-convex k-t SLR and two-step reconstructions,
the average T1,ρ and T2 values corresponding to the gray matter and white matter regions were in agreement with the ones
mentioned in [40], [41] as shown in Fig. 8(c-f). Maps from non-convex k-t SLR results are also shown for an acceleration of
6.25. Some representative gray and white matter pixels were highlighted with the T1,ρ and T2 values in seconds in the same
color. The run-times for non-convex k-t SLR and two-step reconstruction for each slice (averaged over 128 slices) were 58.19s
and 12.7s respectively, implying a 4.8 fold speedup using the latter. These experiments demonstrate that the conditions derived
in this paper are sufficient for the two-step algorithm to succeed. However, the comparisons show that other algorithms (e.g
non-convex k-t SLR) may provide good recovery, even if the two-step recover scheme fails.

VII. CONCLUSION

We theoretically analyzed the recovery of low-rank and jointly sparse matrices from few measurements using the existing
two-step algorithm. We introduced sufficient conditions for the recoverability of the row subspace as well as the subspace
aware recovery of the matrix. The results demonstrate quite significant savings in number of measurements when compared to
the standard multiple measurement vector (MMV) scheme, which assumes same time invariant measurement pattern for all the
columns/time frames. The insights provided by the analysis indicates that clever sampling patterns that are optimized to the
image content may be used to improve the performance in a variety of applications. We also demonstrated the utility of the
framework in accelerating MR parameter mapping. In our current analysis, we haven’t assumed any noise in the measurements.
We will address the robustness analysis, in a future work.

VIII. APPENDIX A: PROOFS

A. Proof of Theorem III.1

Proof. Define
J = ΦUΣ ∈ Ct×r (31)

Since J has r columns and JHJ is Hermitian positive semidefinite, there exists R ∈ Cr×r such that

JHJ = RHR. (32)

We now show that under the spark condition on Φ, R is nonsingular. To this end observe that rank(J) = rank(ΦU) as Σ is
nonsingular. We assert that rank(ΦU) = r. To establish a contradiction suppose rank(ΦU) < r. Hence, there exists a θ 6= 0
such that ΦUθ = 0. Since U has full column rank, Uθ 6= 0. In addition, since the joint sparsity of U is at most k, the
number of non-zero entries in Uθ is less than or equal to k. Hence, ΦUθ = 0 iff Φ has k linearly dependent columns. This
contradicts the condition spark(Φ) > k. Thus indeed rank(J) = rank(ΦU) = r. Thus J has full column rank r and JHJ is
positive definite. Thus it has a nonsingular square root R ∈ Cr×r and P in (14) exists.
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(a) Sampling pattern for
SENSE recovery

(b) Periodic clustering pattern for two-step recovery and non-convex k-t SLR

(c) T1,ρ map with two-step (x 6.25 acceleration, SER = 12 dB) (d) T2 map with two-step (x 6.25 acceleration, SER = 13.25 dB)

(e) T1,ρ map with non-convex k-t SLR: (x 6.25 acceleration, SER =
12.9 dB)

(f) T2 map with non-convex k-t SLR: (x 6.25 acceleration, SER = 12.8
dB)

(g) T1,ρ map with SENSE: (x 4 acceleration) (h) T2 with SENSE: (x 4 acceleration)

Fig. 8. (a) 2x2 pattern for SENSE recovery. (b) For two-step recovery and non-convex k-t SLR: A1 − A4 are repeated 5 times, across 10 TE and 10
TSLs, for each slice. (c,d) T1,ρ and T2 maps at axial, coronal and sagittal views obtained from a full brain reconstruction. Total undersampling = 0.16,
common samples = 0.08, r = 4. (e-f) show corresponding maps from the non-convex k-t SLR recovery. (g,h) show maps from SENSE recovery with 2x2
undersampled prospective data. The parameters of both k-t SLR and two-step algorithm were optimized to get the best possible tissue maps. For k-t SLR,
the Schatten p-value used is 0.1, hence a non-convex k-t SLR. Some representative gray and white matter pixels are highlighted with the T1,ρ and T2 values
in seconds in the same color. The run-times for non-convex k-t SLR and two-step reconstruction for each slice (averaged over 128 slices) were 58.19s and
12.7s respectively, implying a 4.8 fold speedup using the latter.

That Q in (13) is a square root of ZHZ follows as from (3), (9), (31) and (32)

QQH = VRRHVH = VJHJVH

=
(
VΣUH

)
ΦHΦ

(
UΣVH

)
= ZHZ.

Further, from (3), (14) and (13)

PQ = UΣR−HRHVH

= X.

Moreover, P is jointly k-sparse as U is jointly k-sparse and it has rank r as U has rank r and both R and Σ have rank r.
Finally (12) follows from similar reasons.

B. Proof of Theorem III.2
Proof. As Q in (10) is a square root of ZHZ, rank(Q) = r if rank(Z) = r. Further, from (13), (14) and the standing
assumption, rank(P) also equals r if rank(Z) = r. Thus to show (15) it suffices to show that rank(Z) = rank(ΦX) = r.
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We will now prove (a) by showing that under the standing assumption, for almost Φ, ΦX has rank r. Now ΦX has rank
less than r iff all r× r submatrices of ΦX have zero determinants. By definition, each of these determinants is a polynomial
in the elements of Φ [27]. Each such polynomial is either identically zero for all possible Φ matrices, or the roots of the
polynomial are restricted to a manifold of zero volume [42], [26].

Thus, to prove (a), given any X satisfying the standard assumption, we need to find just one Φ ∈ Ct×n, t ≥ r for which
rank(ΦX) = r. Indeed we construct one such Φ ∈ Cr×n. For such a Φ, rank(ΦX) = r, iff under (3), det(ΦUΣ) 6= 0. Indeed,
under the full column rank condition of UΣ, UΣ = W1 ΛWH

2 . Here W1 ∈ Cn×r and W2 ∈ Cr×r obey WH
1 W1 = I ,

WH
2 W2 = I and Λ ∈ Cr×r is a nonsingular diagonal matrix. With Φ = WH

1 , ΦUΣ = ΛWH
2 is invertible. This proves (a).

To prove (b) we need to show that given any rank(Φ) = r, rank(ΦX) = r, for almost all X of rank r. This follows very
similarly to the foregoing by working with XHΦH instead of ΦX, and by finding one X of rank r for which rank(ΦX) = r.

C. Proof of Theorem III.3

Proof. We have from (32),

κ(RHR) = κ(JHJ) =
max‖v‖=1 ‖Jv‖22
min‖v‖=1 ‖Jv‖22

(33)

Define σ2
max and σ2

min as the largest and smallest eigenvalues of Σ. Then as under the standing assumption, U has at most k
nonzero rows and UHU = I , from (16) there obtains:

‖Jv‖22 = ‖ΦUΣv‖22 ≤ σ2
max‖ΦUv‖22 ≤ σ2

max(1 + δk)‖v‖22 (34)

Likewise,
‖Jv‖22 ≥ σ2

min(1− δk)‖v‖22 (35)

Combining the above equations, we obtain

κ(RHR) ≤ σ2
max(1 + δk)

σ2
min(1− δk)

= κ(X)
2 (1 + δk)

(1− δk)
(36)

D. Proof of Theorem IV.2

Proof. We have

‖Yi‖22 ≤ ‖DiP‖22 λmax(QiQ
H
i ) (37)

‖Yi‖22 ≥ ‖DiP‖22 λmin(QiQ
H
i ) (38)

Concatenating the results from all the partitions, we have

‖DP‖22 (1− η) ≤ ‖Y‖22 ≤ ‖DP‖22 (1 + η). (39)

Using the RIP property of D, we obtain

(1− δη) ‖P‖22 ≤ ‖Y‖22 ≤ (1 + δη) ‖P‖22. (40)
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